微生态制剂在葡萄上的促生防病效果Grape growth enhancement and disease promotion by microecologics agents in Baotou
善文辉;胡海瑶;王红丽;王金娥;汪海霞;袁云刚;赵强;张文波;王琦;
摘要(Abstract):
【目的】明确微生态制剂绿康威和绿地康对葡萄的田间促生防病效果,为实现葡萄的安全高效生产提供依据。【方法】在包头市以‘巨峰’和‘寒香蜜’葡萄为材料,比较微生态制剂和杀菌剂单独或交替使用的5个处理在生长量、产量和果实品质、对霜霉病的防效上的差别。【结果】微生态制剂的使用能显著促进‘巨峰’和‘寒香蜜’茎粗、茎长的生长,提高叶片叶绿素含量,同时增加产量和百粒质量,而对叶长、叶宽的影响不稳定,对可溶性固形物含量无影响。生长季在地上部和地下部同时使用绿康威和绿地康7次,对‘巨峰’葡萄的霜霉病防效最好,可达75.68%;而田间常规用药防效仅为38.74%,单独地下部施用绿地康的防效为57.66%。【结论】地上部和地下部同时使用微生态制剂对葡萄促生长和霜霉病绿色防控有良好效果。
关键词(KeyWords): 葡萄;微生态制剂;生长量;葡萄霜霉病;产量
基金项目(Foundation): 葡萄产业技术体系岗位科学家项目(CARS-29-bs-3);; 葡萄化肥农药减施增效基础及关键技术研发(2018YFD0201300)
作者(Author): 善文辉;胡海瑶;王红丽;王金娥;汪海霞;袁云刚;赵强;张文波;王琦;
Email:
DOI: 10.13925/j.cnki.gsxb.20190415
参考文献(References):
- [1]吉沐祥,吴琴燕,王建华,杨勇,吴祥,庄义庆. 10种生物和化学杀菌剂防治葡萄霜霉病的药效评价[J].农学学报,2017,7(3):17-23.JI Muxiang, WU Qinyan, WANG Jianhua, YANG Yong, WU Xiang, ZHUANG Yiqing. Pharmacodynamic evaluation of 10 biological and chemical fungicides against grape downy mildew[J]. Journal of Agriculture, 2017, 7(3):17-23.
- [2] ZHANG H, KONG F F, WANG X N, LIANG L S, SCHOEN C D, FENG J, WANG Z Y. Tetra-primer ARMS PCR for rapid detection and characterization of Plasmopara viticola phenotypes resistant to carboxylic acid amide(CAA)fungicides[J]. Pest Management Science, 2017, 73(8):1655-1660.
- [3] JONES D S, MCMANUS P S. Susceptibility of cold-climate wine grape cultivars to downy mildew, powdery mildew, and black rot[J]. Plant Disease, 2017, 101(7):1077-1085.
- [4]胡盼,李兴红,张夏兰,耿文龙,蔡欣楠,刘正坪,魏艳敏.葡萄霜霉病田间调查及防治效果试验[J].中国农学通报,2013,29(16):181-185.HU Pan, LI Xinghong, ZHANG Xialan, GENG Wenlong, CAI Xinnan, LIU Zhengping, WEI Yanmin. A field survey and control efficacy test of grape downy mildew[J]. Chinese Agricultural Science Bulletin, 2013, 29(16):181-185.
- [5] WARD G N A, AMSDEN B. First report of QoI-resistant downy mildew(Plasmopara viticola)of grape(Vitis vinifera cv. Vidal Blanc)in Kentucky[J]. Plant Disease, 2014, 98(2):276-277.
- [6] EPA U. Pesticide product and label system[Z]. https://www3.epa.gov/pesticides/chem_search/ppls/081606-00001-20100614.pdf.
- [7]臧超群.葡萄霜霉病生防细菌SY286及控病机理研究[D].沈阳:沈阳农业大学,2014.ZANG Chaoqun. Biocontrol bacterium SY286 strain against Plasmopara viticola and its control mechanism[D]. Shenyang:Shenyang Agricultural University, 2014.
- [8]毕秋艳,韩秀英,马志强,赵建江,王文桥,贾海民.枯草芽胞杆菌HMB-20428与化学杀菌剂互作对葡萄霜霉病菌抑制作用和替代部分化学药剂减量用药应用[J].植物保护学报,2018,45(6):1396-1404.BI Qiuyan, HAN Xiuying, MA Zhiqiang, ZHAO Jianjiang,WANG Wenqiao, JIA Haimin. Inhibitory effects of Bacillus subtilis HMB-20428 interacted with chemical fungicides and decrement of chemical fungicides on oomycete pathogen Plasmopara viticola[J]. Journal of Plant Protection, 2018, 45(6):1396-1404.
- [9]臧超群,白元俊,张海东,谢瑾卉,林英,梁春浩.暗黑链霉菌PY-1活性产物分析及其对葡萄霜霉病田间防效评价[J].植物保护学报,2018,45(4):864-870.ZANG Chaoqun, BAI Yuanjun, ZHANG Haidong, XIE Jinhui,LIN Ying, LIANG Chunhao. Study on bioactive metabolite of Streptomyces atratus PY-1 and the field control efficiency against grapevine downy mildew[J]. Journal of Plant Protection,2018, 45(4):864-870.
- [10] GAVIOLI M C A N,TENFEN S Z A, NODARI S Z, WELTER R O, MORA L J S, SAIFERT F D, SILVA L D, GUERRA A L, PEDRO M. Proteome of Plasmopara viticola-infected Vitis vinifera provides insights into grapevine Rpv1/Rpv3 pyramided resistance to downy mildew[J]. Journal of Proteomics, 2017, 151:264-274.
- [11] ROMANAZZI G, MANCINI V, FELIZIANI R, GIANFRANCO M, FELIZIANI, SERVILI E, ENDESHAW A, NERI D. Impact of alternative fungicides on grape downy mildew control and vine growth and development[J]. Plant Disease, 2016, 100(4):739-748.
- [12] VINOTHINI K, AHILADEVI P, PRAKASAM V. Management of grapewine downy mildew by new fungicide molecule upf 509(azoxystrobin 8.3%w/w+mancozeb 64.75 w/w)along with Pseudomonas fluorescens[J]. Plant Disease Research, 2014, 29(1):112-114.
- [13] El-SHARKAWY H H A, ABO-EL-WAFA T S A, IBRAHIM S A. Biological control agents improve the productivity and induce the resistance against downy mildew of grapevine[J]. Journal of Plant Pathology, 2018, 100(1):33-42.
- [14]安天赐,田佳,李晓宇.皮尔瑞俄类芽孢杆菌防治葡萄霜霉病试验[J].中国果树,2016(5):73-76.AN Tianci, TIAN Jia, LI Xiaoyu. Pirui-Bacillus sp. control of grape downy mildew[J]. China Fruits, 2016(5):73-76.
- [15] ZHANG X, ZHOU Y Y, LI Y, FU X C, WANG Q. Screening and characterization of endophytic Bacillus for biocontrol of grapevine downy mildew[J]. Crop Protection, 2017, 96:173-179.
- [16] BUONASSIS D, COLOMBO M, MIGLIARO D, DOLZANI C,PERESSOTTI E, MIZZOTTI C, VELASCO R, MASIERO S,PERAZZOLLI M, VEZZULLI S. Breeding for grapevine downy mildew resistance:a review of“omics”approaches[J].Euphytica, 2017, 213(5):103.
- [17] ROUXEL M, MEATRE P, BAUDOIN A, CARISSE O, DELIERE L, ELLIS M A, GADOURY D, LU J, NITA M, RICHARD-CERVERA S, SCHILDER A, WISE A, DELMOTTE F.Geographic distribution of cryptic species of Plasmopara viticola causing downy mildew on wild and cultivated grape in eastern north America[J]. Phytopathology, 2014, 104(7):692-701.
- [18] BEM D B, BRIGHENTI E, BONIN B F, ALLEMBRANDT R,ARAUJI L, FONTANELLA A, BOGO B A. Downy mildew intensity in tolerant grapes varieties in highlands of southern Brazil[J]. BIO Web of Conferences, 2016, 7:1015.
- [19] BARROS L B, BIASI L A, CARISSE O, MIO L L M D. The influence of table grape rootstock and cultivar combinations on susceptibility to downy mildew[J]. Australasian Plant Pathology,2018, 47(2):171-179.
- [20] FURUYA S, MOCHIZUKI M, AOKI Y, KOBAYASHI H,TAKAYANAGI T, SHIMIZU M, SUSUKI S. Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases[J]. Biocontrol Science and Technology,2011, 21(6):705-720.
- [21] PINTO C T, SOUSA D P S. Unravelling the diversity of grapevine microbiome[J]. PLoS One, 2014, 9(1):e85622.
- [22] LI Y, HéLOIR M C, ZHANG X, GEISSLER M, TROUVELOT S, JACQUENS L, HENKEL M, SU X, FANG S X, WANG Q,ADRIAN M. Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defence stimulation[J]. Molecular Plant Pathology, 2019, 20(8):1037-1050.
- [23] CHEN X Y, ZHANG Y Y, FU X C. Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot[J]. Postharvest Biology and Technology,2016, 115:113-121.