BABA处理对草莓采后灰霉病的控制及其转录组学分析Effect of BABA treatment on controlling grey mould disease of postharvest strawberries and transcriptomic analysis
汪开拓;雷长毅;黎春红;邱玲岚;匡文玲;
摘要(Abstract):
【目的】从转录组学角度探讨经β-氨基丁酸(β-aminobutyric acid,BABA)处理的草莓果实对病害胁迫的响应及其与细胞还原势变化的联系,以阐释其中诱导抗性的形成机制。【方法】‘丰香’草莓果实经10 mmol·L-1BABA及病原菌Botrytis cinerea接种后于(20±1)℃下贮藏5 d,期间每隔1 d测定果实发病率及还原性物质合成量,并以Illumina HiSeqTM2500技术对果实样本进行转录组测序。【结果】BABA+B. cinerea处理组较单一BABA处理和病原菌接种可更为显著诱导草莓果实PRs基因丰度的上升,并抑制果实灰霉病发生和维持品质。对差异表达基因(DEGs)的GO和KEGG聚类分析显示,经BABA处理后再接种B. cinerea的草莓果实中抗坏血酸-谷胱甘肽循环(AsA-GSH循环)关键基因、活性氧代谢酶系统关键基因、谷胱甘肽(GSH)合成途径关键基因、磷酸戊糖途径(PPP)关键基因及GSH过氧化物酶转录水平显著提高,同时果实中还原性物质逐渐积累。【结论】BABA可通过提高草莓果实还原性物质合成相关基因表达量,增强果实中还原性底物的合成以提升细胞还原势,促使果实在病原菌侵染时展现priming抗病性,抑制果实采后灰霉病症状的发展。
关键词(KeyWords): 草莓果实;β-氨基丁酸;转录组;还原势;抗病性诱导;品质
基金项目(Foundation): 国家自然科学基金面上项目(31671913);; 重庆市第五批高校优秀人才支持计划(201731);; 重庆市基础与前沿研究计划项目(cstc2015jcyj A80028);; 2019年度重庆市大学生创新性实验计划项目(201910643039)
作者(Author): 汪开拓;雷长毅;黎春红;邱玲岚;匡文玲;
Email:
DOI: 10.13925/j.cnki.gsxb.20200162
参考文献(References):
- [1]EL-GHANAM A A,FARFOUR S A,RAGAB S S.Bio-suppression of strawberry fruit rot disease caused by Botrytis cinerea[J].Journal of Plant Pathology and Microbiology,2015,S3:1-7.
- [2]RODRIGUEZ-GARCIA I,SILVA-ESPINOZA B A,ORTEGA-RAMIREZ L A,LEYVA J M,SIDDIQUI M W,CRUZ-VALEN-ZUELA M R,GONZALEZAGUILAR G A,AYALA-ZAVALAJ F.Oregano essential oil as an antimicrobial and antioxidant additive in food products[J].Critical Reviews in Food Science and Nutrition,2016,56(10):1717-1727.
- [3]ROMANAZZI G,SANZANI S M,BI Y,TIAN S P,MARTíNEZ P G,ALKAN N.Induced resistance to control postharvest decay of fruit and vegetables[J].Postharvest Biology and Technology,2016,122(1):82-94.
- [4]HAMIDUZZAMAN M M,JAKAB G,BARNAVON L,NEU-HAUS J M,MAUCH-MANI B.β-aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling[J].Molecular Plant-Microbe Interactions,2005,18(8):819-829.
- [5]GONZáLEZ-BOSCH C.Priming plant resistance by activation of redox-sensitive genes[J].Free Radical Biology and Medicine,2018,122(1):171-180.
- [6]SKELLY M J,LOAKE G J.Synthesis of redox-active molecules and their signaling functions during the expression of plant disease resistance[J].Antioxidants and Redox Signaling,2013,19(9):990-997.
- [7]WANG K T,WU D Z,BO Z Y,CHEN S,WANG Z R,ZHENGY H,FANG Y.Regulation of redox status contributes to priming defense against Botrytis cinerea in grape berries treated withβ-aminobutyric acid[J].Scientia Horticulturae,2019,244(1):352-364.
- [8]汪开拓,郑永华,唐文才,李廷君,张卿,尚海涛.茉莉酸甲酯处理对葡萄果实NO和H2O2水平及植保素合成的影响[J].园艺学报,2012,39(8):1559-1566.WANG Kaituo,ZHENG Yonghua,TANG Wencai,LI Tingjun,ZHANG Qing,SHANG Haitao.Effects of methyl jasmonate treatment on levels of nitric oxide and hydrogen peroxide and phytoalexin synthesis in postharvest grape berries[J].Acta Horticulturae Sinica,2012,39(8):1559-1566.
- [9]WILHELM B T,LANDRY J R.RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing[J].Methods,2009,48(3):249-257.
- [10]汪开拓,廖云霞,韩林.羟丙基甲基纤维素涂膜处理对采后杨梅果实品质、生理及花色苷合成的影响[J].食品与发酵工业,2015,41(1):244-251.WANG Kaituo,LIAO Yunxia,HAN Lin.Effects of hydroxypropylmethylcellulose coating on qualities,physiological attributes and anthocyanin synthesis in postharvest Chinese bayberries[J].Food and Fermentation Industries,2015,41(1):244-251.
- [11]SLINKARD K,SINGLETON V L.Total phenol analysis:automation and comparison with manual methods[J].American Journal of Enology and Viticulture,1977,28(1):49-55.
- [12]WANG K T,JIN P,SHANG H T,ZHENG Y H.Effect of methyl jasmonate in combination with ethanol treatment on postharvest decay and antioxidant capacity in Chinese bayberries[J].Journal of Agricultural and Food Chemistry,2010,58(17):9597-9604.
- [13]RUFINO M S M,FERNANDES F A N,ALVES R E,DE BRI-TO E S.Free radical-scavenging behaviour of some north-east Brazilian fruits in a DPPH system[J].Food Chemistry,2009,114(2):693-695.
- [14]BURSAL E,GüL?IN?.Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa)[J].Food Research International,2011,44:1482-1489.
- [15]MARINO D,GONZáLEZ E M,FRENDO P,PUPPO A,AR-RESE-IGOR C.NADPH recycling systems in oxidative stressed pea nodules,a key role for the NADP+-dependent isocitrate dehydrogenase[J].Planta,2007,225(2):413-421.
- [16]RAHMAN I,KODE A,BISWAS S K.Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method[J].Nature Protocols,2006,1(6):3159-3165.
- [17]KAMPFENKEL K,VANMONTAGU M,INZE D.Extraction and determination of ascorbate and dehydroascorbate from plant tissue[J].Analytical Biochemistry,1995,225(1):165-167.
- [18]LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J].Methods,2001,25(4):402-408.
- [19]WANG J L,ZENG Q,ZHU J G,LIU G,TANG H Y.Dissimilarity of ascorbate-glutathione (As A-GSH) cycle mechanism in two rice (Oryza sativa L.) cultivars under experimental free-air ozone exposure[J].Agriculture,Ecosystems and Environment,2013,165(1):39-49.
- [20]HASANUZZAMAN M,NAHAR K,ANEE T I,FUJITA M.Glutathione in plants:biosynthesis and physiological role in environmental stress tolerance[J].Physiology and Molecular Biology of Plants,2017,23(2):249-268.
- [21]MIAO Y.An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses[J].Plant Cell,2006,18(10):2749-2766.
- [22]WAMELINK M M C,STRUYS E A,JAKOBS C.The biochemistry,metabolism and inherited defects of the pentose phosphate pathway:A review[J].Journal of Inherited Metabolic Disease,2008,31(6):703-717.
- [23]CONRATH U,BECKERS G J M,LANGENBACH C J G,JASKIEWICZ M.Priming for enhanced defense[J].Annual Review of Phytopathology,2015,53(1):97-119.
- [24]汪开拓,郑永华,狄华涛,马莉,卢霞,黄珂.BTH处理诱导葡萄悬浮细胞防卫反应对其蔗糖代谢的影响[J].果树学报,2014,31(1):66-71.WANG Kaituo,ZHENG Yonghua,DI Huatao,MA Li,LU Xia,HUANG Ke.Effect of defense responses induced by BTH treatment on sucrose metabolism in grape cell suspensions[J].Journal of Fruit Science,2014,31(1):66-71.
- [25]LI C H,WANG J,JI N N,LEI C Y,ZHOU D X,ZHNEG Y H.Pp HOS1,a RING E3 ubiquitin ligase,interacts with Pp WRKY22 in the BABA-induced priming defense of peach fruit against Rhizopus stolonifer[J].Postharvest Biology and Technology,2020,159(1):111029-111037.
- [26]WANG K,LIAO Y,CAO S,DI H T,ZHNEG Y H.Effects of benzothiadiazole on disease resistance and soluble sugar accumulation in grape berries and its possible cellular mechanisms involved[J].Postharvest Biology and Technology,2015,102(1):51-60.
- [27]WANG K,LIAO Y,KAN J,HAN L,ZHNEG Y H.Response of direct or priming defense against Botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries[J].International Journal of Food Microbiology,2015,194(1):32-39.
- [28]KARAPETYAN S,DONG X.Redox and the circadian clock in plant immunity:A balancing act[J].Free Radical Biology and Medicine,2018,119(1):56-61.
- [29]GUTSCHE N,ZACHGO S.The N-terminus of the floral arabidopsis TGA transcription factor PERIANTHIA mediates redoxsensitive DNA-binding[J].PLo S One,2016,11(4):e0153810-e0153828.
- [30]DING Z J,YAN J Y,XU X Y,YU D Q,LI G X,ZHANG S Q,ZHENG S J.Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis[J].The Plant Journal,2014,79(1):13-27.
- [31]MUKHTAR M S,NISHIMURA M T,DANGL J.NPR1 in plant defense,it’s not over’til it’s turned over[J].Cell,2009,137(5):804-806.
- [32]MOU Z,FAN W,DONG X.Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes[J].Cell,2003,113(7):935-944.