基于microRNA测序分析miRNA在刺葡萄抗白腐病中的作用Analysis of the function of miRNA on the resisitance to white-rot disease in Vitis davidii based on microRNA sequencing
张颖;樊秀彩;姜建福;李民;刘崇怀;
摘要(Abstract):
【目的】在前期的种质资源评价过程中,发掘一株中国野生刺葡萄0943,该株系高抗葡萄白腐病。基于mi-croRNA(miRNA)在植物抗病中的重要作用,拟从miRNA水平探讨刺葡萄在受到病原菌侵染后的表达调控机制。【方法】以抗病的中国野生刺葡萄为试材,对比感病的欧亚种'美人指’,分别以病原菌诱导,在0 hpi(hours post inoculation)和病菌诱导后的12 hpi、36 hpi处理后采样,进行二代测序,并对数据进行KEGG及表达量的差异分析。【结果】对比感病葡萄'美人指’,分析了抗病刺葡萄在基础代谢和抗病途径中的差异,结合miRNA的表达量,获得了150个表达量发生变化的miRNA,其中44个miRNA的表达在刺葡萄和'美人指’之间存在差异。5个miRNA在刺葡萄中特异表达,但是在'美人指’中不表达,实施定量验证了这一结果。靶基因预测显示,其靶基因包括与抗病的紧密相关的WRKY、SPL、EFR等转录因子,还包括与抗病直接相关的LRR类的抗病基因。【结论】筛选出5个在刺葡萄上特异表达候选miRNA(miR172a、miR172b、miR845a、novel_81和miR159a),可作为刺葡萄抗白腐病研究的目标。
关键词(KeyWords): 葡萄白腐病;microRNA;抗病;测序
基金项目(Foundation): 国家自然科学基金面上项目(31872057);; 中国农业科学院科技创新工程(CAAS-ASTIP-2018-ZFRI);; 现代农业产业技术体系建设专项资金(CARS-29-yz-1);; 中央级科研院所基本科研业务费;; 农业部作物种质资源保护项目(NB2130135-34)
作者(Author): 张颖;樊秀彩;姜建福;李民;刘崇怀;
Email:
DOI: 10.13925/j.cnki.gsxb.20180165
参考文献(References):
- [1] MARTINI M,BOTTIi S,MARCONE C,MARZACHI C,CA-SATI P,BIANCO P A,BENEDETTI R,BERTACCINI A. Ge-netic variability among flavescence doree phytoplasmas fromdifferent origins in Italy and France[J]. Mol Cell Probes,2002,16(3):197-208.
- [2] FERREIRA R B,MONTEIRO S S,PICARRA-PEREIRA M A,TEIXEIRAa A R. Engineering grapevine for increased resis-tance to fungal pathogens without compromising wine stability[J]. Trends in Biotechnology,2004,22(4):168-173.
- [3]贺普超.葡萄学[M].北京:中国农业出版社,1999:3-10.HE Puchao. Viticulture[M]. Beijing:China Agriculture Press,1999:3-10.
- [4]孔庆山.葡萄志[M].北京:中国农业出版社,2004:4-10.KONG Qingshan. Flora of Chinese grapes[M]. Beijing:ChinaAgricultural Science and Technology Press,2004:4-10.
- [5] MICA E,PICCOLO V,ELLEDONNE M,FERRARINI A,PEZ-ZPTTI M,CASATI C,FABBRO C,VALLE G,POLICRITI A,MORGANTE M. Correction:High throughput approaches re-veal splicing of primary microRNA transcripts and tissue specif-ic expression of mature microRNAs in Vitis vinifera[J]. BMC ge-nomics,2010,11(1):109.
- [6] PANTALEO V,SZITTYA G,MOXON S,MIOZZI L,MOULT-ON V,DALMAY T,BURGYAN J. Identification of grapevinemicroRNAs and their targets using high-throughput sequencingand degradome analysis[J]. Plant Journal,2010,62(6):960-976.
- [7] WANG C,WANG X,KIBET N K,SONG C,ZHANG C,LI X,HAN J,FANG J. Deep sequencing of grapevine flower and ber-ry short RNA library for discovery of novel microRNAs and val-idation of precise sequences of grapevine microRNAs depositedin miRBase[J]. Physiologia Plantarum,2011,30(1):15-25.
- [8] LLAVE C,KASSCHAU K D,RECTOR M A,CARRINGTONJ C. Endogenous and silencing-associated small RNAs in plants[J]. The Plant Cell,2002,14(7):1605-1619.
- [9] LANGMEAD B. Aligning short sequencing reads with bowtie[M]//Current Protocols in Bioinformatics. New Jersey,USA:John Wiley&Sons,Inc.,2010.
- [10] WEN M,SHEN Y,SHI S,TANG T. miREvo:an integrative mi-croRNA evolutionary analysis platform for next-generation se-quencing experiments[J]. BMC Bioinformatics,2012,13:140.
- [11] FRIEDLANDER M R,MACKOWIAK S.D,LI N,CHEN W,RAJEWSKY N. miRDeep2 accurately identifies known andhundreds of novel microRNA genes in seven animal clades[J].Nucleic Acids Research,2012,40(1):37-52.
- [12] ZHOU R,HU G,GONG A.Y,CHEN X M. Binding of NF-kap-paB p65 subunit to the promoter elements is involved in LPS-in-duced transactivation of miRNA genes in human biliary epitheli-al cells[J]. Nucleic Acids Research,2010,38(10):3222-3232.
- [13] WANG L,FENG Z,WANG X,WANG X,ZHANG X. DEGseq:an R package for identifying differentially expressed genes fromRNA-seq data[J]. Bioinformatics,2010,26(1):136-138.
- [14] KANEHISA M,ARAKI M,GOTO S,HATTORI M,HIRAKA-WA M,ITOH M,KATAYAMA T,KAWASHIMA S,OKUDA S,TOKIMATSU T. KEGG for linking genomes to life and the en-vironment[J]. Nucleic Acids Research,2008,36(Database is-sue):480-484.
- [15] MAO X,CAI T,OLYARCHUK J G,WEI L. Automated ge-nome annotation and pathway identification using the KEGG Or-thology(KO)as a controlled vocabulary[J]. Bioinformatics,2005,21(19):3787-3793.
- [16] ZHANG Y,FENG J C. Identification and characterization of thegrape WRKY family[J]. Biomed Research International,2014,2014(20):787680.
- [17]张颖,孙海生,樊秀彩,姜建福,刘崇怀.中国野生葡萄资源抗白腐病鉴定及抗性种质筛选[J].果树学报2013,30(20):191-196.ZHANG Ying,SUN Haisheng,FAN Xiucai,JIANG Jianfu,LIUChonghuai. Identification and evaluation of resistance of Vitis togrape white rot[J]. Journal of Fruit Science,2013,30(20):191-196.
- [18] CHEN Y,DONG J,BENNETZEN J.L,ZHONG M,YANG J,ZHANG J,LI S,HAO X,ZHANG Z,WANG X. Integratingtranscriptome and microRNA analysis identifies genes and mi-croRNAs for AHO-induced systemic acquired resistance in N.tabacum[J]. Scientific Reports,2017,7(1):12504.
- [19] MARTINEZ F,ELENA S F,DAROS J A. Fate of artificial mi-croRNA-mediated resistance to plant viruses in mixed infections[J]. Phytopathology,2013,103(8):870-876.
- [20] ALI I,AMIN I,BRIDDON R W,MANSOOR S. Artificial mi-croRNA-mediated resistance against the monopartite begomovi-rus cotton leaf curl Burewala virus[J]. Virology Journal,2013,10(1):231.
- [21] LI Y,ALONSO-PERAL M,WONG G,WANG M B,MILLARA A. Ubiquitous miR159 repression of MYB33/65 in Arabidop-sis rosettes is robust and is not perturbed by a wide range ofstresses[J]. BMC Plant Biology,2016,16(1):179.
- [22] KIM M H,Cho J S,LEE J H,BAE S Y,CHOI Y I,PARK E J,LEE H,KO J H. Poplar MYB transcription factor PtrMYB012and its Arabidopsis AtGAMYB orthologs are differentially re-pressed by the Arabidopsis miR159 family[J]. Tree Physiology,2017,27:1156-1178.
- [23] ALONSO-PERAL M M,LI J,LI Y,ALLEN R S,SCHNIPPEN-KOETTER W,OHMS S,White R G,Millar A A. The microR-NA159-regulated GAMYB-like genes inhibit growth and pro-mote programmed cell death in Arabidopsis[J]. Plant Physiolo-gy,2010,154(2):757-771.
- [24] CUI L G,SHAN J X,SHI M,GAO J P,LIN H X. The miR156-SPL9-DFR pathway coordinates the relationship between devel-opment and abiotic stress tolerance in plants[J]. Plant Journal,2014,80(6):1108-1117.
- [25] LONG J M,LIU C Y,FENG M Q,LIU Y,WU X M,GUO WW. miR156-SPLs module regulates somatic embryogenesis in-duction in Citrus callus[J]. Journal of Experimental Botany,30(5):156-170.
- [26] QIAN M,NI J,NIU Q,BAI S,BAO L,LI J,SUN Y,ZHANGD,TENG Y:Response of miR156-SPL module during the redpeel coloration of bagging-treated Chinese sand pear(Pyrus pyr-ifolia Nakai)[J]. Frontiers in Physiology,2017,8:550.
- [27] HE J,XU M,WILLMANN M R,MCRORMICK K,HU T,YANG L,STARKER C G,VOYTAS D F,MEYERS B C,PO-ETHING R S. Threshold-dependent repression of SPL gene ex-pression by miR156/miR157 controls vegetative phase changein Arabidopsis thaliana[J]. PLoS Genetics,2018,14(4):e1007337.
- [28] DOTTO M,GOMEZ M S,SOTO M S,CASATI P. UV-B radia-tion delays flowering time through changes in the PRC2 com-plex activity and miR156 levels in Arabidopsis thaliana[J].Plant Cell&Environment,2018,20(1):31-45.
- [29] HOLT D B,GUPTA V,MEYER D,ABEL N B,ANDERSEN SU, STOUGAARD J, MARKMANN K. microRNA 172(miR172)signals epidermal infection and is expressed in cellsprimed for bacterial invasion in Lotus japonicus roots and nod-ules[J]. New Phytologist,2015,208(1):241-256.
- [30] JUNG J H,SEO P J,KANG S K,PARK C M. miR172 signalsare incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions[J]. Plant Mo-lecular Biology,2011,76(1/2):35-45.
- [31] ZHU Q H,UPADHYAYA N M,GUBLER F,HELLIWELL C A.Over-expression of miR172 causes loss of spikelet determinacyand floral organ abnormalities in rice(Oryza sativa)[J]. BMCPlant Biology,2009,9(1):149.
- [32] HAN Y,ZHANG X,WANG W,WANG Y,MING F. The sup-pression of WRKY44 by GIGANTEA-miR172 pathway is in-volved in drought response of Arabidopsis thaliana[J]. PloSone,2013,8(11):e73541.
- [33] GUAN X,PANG M,NAH G,SHI X,YE W,STELLY D M,CHEN Z J. miR828 and miR858 regulate homoeologous MYB2gene functions in Arabidopsis trichome and cotton fibre develop-ment[J]. Nature Communications,2014,5(1):3050.